Defines an Extended Kalman Filter (EKF) class for state estimation.
More...
#include <ArduinoEigen.h>
#include <EEPROM.h>
#include <datatypes.h>
Go to the source code of this file.
|
Matrix< double, DIM_X, 1 > | predictionModel (const Matrix< double, DIM_X, 1 > ¤tState) |
| Prediction model for the Extended Kalman Filter (EKF). More...
|
|
Matrix< double, DIM_Z, DIM_X > | calculateJacobianMatrix (const Matrix< double, DIM_X, 1 > &vecX) |
| Calculate the Jacobian matrix for the measurement model. More...
|
|
Matrix< double, DIM_Z, 1 > | calculateMeasurement (const Matrix< double, DIM_X, 1 > ¤tPosition) |
| Calculate the measurement vector. More...
|
|
|
static uint32_t | lastTime = millis() |
|
static Matrix< double, DIM_X, 1 > | x_kminus1 = (Eigen::Matrix<double, DIM_X, 1>() << 0.0, 0.0, 0.0).finished() |
|
static Matrix< double, NUM_LANDMARKS, 3 > | landmarkPositions { Matrix<double, NUM_LANDMARKS, 3>::Zero() } |
|
Defines an Extended Kalman Filter (EKF) class for state estimation.
Implementation of the EKF class is based on the following source: https://codingcorner.org/extended-kalman-filter-in-cpp-with-eigen3/
◆ DIM_X
◆ DIM_Z