UWB-Tracking
Loading...
Searching...
No Matches
Classes | Functions | Variables
ekf Namespace Reference

Classes

class  EKF_Filter
 Extended Kalman Filter (EKF) class for state estimation. More...
 

Functions

Matrix< double, DIM_X, 1 > predictionModel (const Matrix< double, DIM_X, 1 > &currentState)
 Prediction model for the Extended Kalman Filter (EKF). More...
 
Matrix< double, DIM_Z, DIM_XcalculateJacobianMatrix (const Matrix< double, DIM_X, 1 > &vecX)
 Calculate the Jacobian matrix for the measurement model. More...
 
Matrix< double, DIM_Z, 1 > calculateMeasurement (const Matrix< double, DIM_X, 1 > &currentPosition)
 Calculate the measurement vector. More...
 

Variables

static uint32_t lastTime = millis()
 
static Matrix< double, DIM_X, 1 > x_kminus1 = (Eigen::Matrix<double, DIM_X, 1>() << 0.0, 0.0, 0.0).finished()
 
static Matrix< double, NUM_LANDMARKS, 3 > landmarkPositions { Matrix<double, NUM_LANDMARKS, 3>::Zero() }
 

Function Documentation

◆ calculateJacobianMatrix()

Matrix< double, DIM_Z, DIM_X > calculateJacobianMatrix ( const Matrix< double, DIM_X, 1 > &  vecX)

Calculate the Jacobian matrix for the measurement model.

Parameters
vecXThe state vector.
Returns
The Jacobian matrix.

◆ calculateMeasurement()

Matrix< double, DIM_Z, 1 > calculateMeasurement ( const Matrix< double, DIM_X, 1 > &  currentPosition)

Calculate the measurement vector.

Parameters
currentPositionThe current position.
Returns
The measurement vector.

◆ predictionModel()

Matrix< double, DIM_X, 1 > predictionModel ( const Matrix< double, DIM_X, 1 > &  currentState)

Prediction model for the Extended Kalman Filter (EKF).

Parameters
currentStateThe current state vector.
Returns
The predicted state vector.

Variable Documentation

◆ landmarkPositions

Matrix<double, NUM_LANDMARKS, 3> landmarkPositions { Matrix<double, NUM_LANDMARKS, 3>::Zero() }
static

◆ lastTime

uint32_t lastTime = millis()
static

◆ x_kminus1

Matrix<double, DIM_X, 1> x_kminus1 = (Eigen::Matrix<double, DIM_X, 1>() << 0.0, 0.0, 0.0).finished()
static